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Abstract—A novel prediction scheme for polarized narrowband
MIMO channels is proposed in this paper. The prediction scheme
is based on estimation of the parameters of a double directional
polarized propagation model. The proposed algorithm transforms
the channel impulse response matrix in such a manner that a
multidimensional extension of the ESPRIT algorithm can be uti-
lized to jointly estimate the angles of arrival, angles of departure,
Doppler shifts and complex polarimetric weights of the dominant
multipath components. Simulation results show that the proposed
algorithm outperforms repeated application of one dimensional
ESPRIT based approach with similar computational complexity.

Index Terms—Polarized MIMO, ESPRIT, Channel Prediction,
Parameter Estimation.

I. INTRODUCTION

Next generation wireless communication systems are faced
with the challenge of providing high data rate and improved
Quality of Service (QoS) for an increasing number of users.
This requires transmission schemes and receiver algorithms
that offer significant increases in spectral efficiency. To this
end, adaptive and limited feedback multiple input multi-
ple output (MIMO) systems are being considered. Recently,
MIMO systems having dual polarized antenna pairs at the
transmitter and/or receiver have been adopted as the antenna
configuration of choice in wireless standards such as 3GPP-
LTE/LTE-Advanced. This is due primarily to the potential
of decreasing antenna correlation and increasing achievable
capacity by deploying more antennas within limited space
constraints [1]. A common problem with adaptive transmission
schemes and feedback based MIMO is that channel state
information at the transmitter (CSIT) is often outdated before it
can be used because of the changes in the channel and delay in
the feedback link. Extrapolation of the CSI into the future has
however been shown to mitigate the performance degradation
resulting from using outdated CSIT for link adaptation [2]
and/or precoding. In [3], the effects of channel aging on the
performance of massive MIMO systems was analysed. It was
shown that significant capacity is lost due to aging of time
varying channels.

Channel state prediction has been well addressed in the
literature for SISO systems (see e.g [4, 5]) and some publi-
cations exist on the prediction of MIMO channels. However,
to the authors’ knowledge, there exist no publication in the
open literature on the prediction of polarized MIMO chan-
nels. In [6], an autoregressive model (AR) based predictor
with a beamspace transformation scheme was proposed for

narrowband MIMO channels. The authors of [7] extended the
classical ESPRIT based SISO prediction scheme to MIMO
channels. This approach does not utilize the additional in-
formation offered by multiple sampling of the channel. The
authors of [8] proposed a prediction algorithm using Doppler-
delay analysis for coordinated multi-point cellular systems.
It was shown that the performance of base station cooper-
ation is improved by predicting the channel. This approach
is however, not directly applicable to MIMO systems with
collocated antenna elements. In [9], a parametric prediction
for narrowband MIMO systems that exploits the receive spatial
and temporal correlations in realistic spatial channel models
was proposed. Polarization diversity and differences in mod-
elling between polarized and non-polarized MIMO systems
make these schemes unsuitable for the prediction of polarized
MIMO channels.

Motivated by the benefit of CSI prediction for adaptive and
limited feedback schemes and the gains of using polarized
antenna configurations, we make the following contributions
in this paper.

• Based on the industry standard 3GPP/WINNER II chan-
nel model [10], we derive a parametrized model for
polarized MIMO in 2D environments.

• We propose a transformation to convert the channel im-
pulse response into three dimensional array data such that
a sufficiently large data matrix satisfying some invariance
structure is obtained.

• We provide an original adaptation of multidimensional
ESPRIT [11] to jointly estimate the parameters of polar-
ized MIMO channels and use the estimates for prediction.

II. CHANNEL MODELS

In this section, we present a brief review of the standardized
WINNER II channel model and derive a parametrization of the
model on which the prediction scheme of Section III is based.

A. 2D Polarized MIMO Spatial Channel Model

Consider a feedback based narrowband MIMO system with
a uniform linear array (ULA) of dual-polarized antenna pairs
(see Fig. 1) at both the base station (BS) and mobile station
(MS). Assuming that the BS and MS arrays have N and M an-
tenna pairs, respectively and that the propagation environment
is characterized by P far field scatterers, the channel between



the nth transmit and mth receive antenna pair is given by [10]

hm,n(t) =

P∑
p=1

[
XnT,v
XnT,h

]∗ [
exp(jΦvvp )

√
κp exp(jΦvhp )

√
κp exp(jΦhvp ) exp(jΦhhp )

]

×
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XmR,v
XmR,h
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exp(j(n− 1)ϕp + j(m− 1)Ωp + j2πνpt)

(1)

where (·)∗ denotes the Hermitian transpose, P is the number
of scattering sources, Ωp = 2πδr sin θp and ϕp = 2πδt sinφp.
δr and δt are the spacings between the receive and transmit
antenna pairs, respectively. φp and θp are the angle of depar-
ture (AOD) and angle of arrival (AOA) of the pth scattering
source respectively. [Φvv

p ,Φ
vh
p ,Φ

hv
p ,Φ

hh
p ] ∼ U(−π, π) are the

random initial phases of the pth path for the four polarization
components. XnT,v and XnT,h are the nth transmit antenna
element field patterns for the vertical and horizontal polariza-
tions, respectively. XmR,v and XmR,h are the mth receive antenna
element field patterns. The cross polarization power ratio
(XPR) for the pth path, κp = 10X/10, (where X ∼ N (σ, u))
is assumed to be log-Normal distributed. νp =

v cos(θp−ϑv)
λ

is the Doppler shift of the pth path. Finally, v, ϑv and λ are
the mobile speed, direction of motion and carrier wavelength,
respectively. If (for example) the BS and MS have ideal dipole
antennas tilted at α from the vertical axis and the antenna
polarization leakage effects can be neglected, the antenna field
pattern for the pth path would be given by [1]

XR =

[
XR,v

XR,h

]
=

[
cosα

sinα cos θ

]
(2)

B. Parametrized Prediction Model

In order to characterize the spatial structure and polarization
diversity of the polarized MIMO channel, a matrix represen-
tation of the model in (1) is required. Collecting the 4NM
channels in (1) into a matrix, we obtain

H(t) =


h1,1 h2,1 · · · h2N,1

...
...

. . .
...

h2M,1 h2M,2 · · · h2M,2N

 (3)

Using the model in (1), the 2M×2N polarized MIMO channel
impulse response (3) is given by

H(t) =

P∑
p=1

S∗T(φp)GpSR(θp) exp(j2πkνpt) (4)

where

Gp =

[
gvvp gvhp

ghvp ghhp

]
∈ C2×2 (5)

is the polarimetric weight matrix. SR(θp) ∈ C2×2M is the
receive polarized array steering matrix defined as

SR(θp) = aR(θp)⊗

[
cosα1 cosα2

sinα1 cos θp sinα2 cos θp

]
(6)

(a) -45/45 (b) 0/90

Fig. 1: Polarized MIMO Antenna Configurations: (a) Slanted
45 configuration and (b) VV/HH configuration.

where ⊗ denotes the Kronecker product, α1 and α2 are the
slant angles and |α1 − α2| = π/2. The array steering vector
aR(θp) ∈ C1×M is defined for a ULA as

aR(θp) = [1 exp(−jΩp) · · · exp(−j(M − 1)Ωp)]
T

(7)
The transmit polarized steering matrix is analogously obtained
by replacing θp with φp in (6) and Ωp with ϕp in (7). Assuming
that the sampling interval is ∆t, the sampled channel at the k
time instant is thus

H(k) =

P∑
p=1

S∗T(φp)GpSR(θp) exp(j2πkνp∆t) (8)

The parameters Gp, θp, φp and νp are assumed constant over
the region of interest. This assumption has been shown in the
industry standard 3GPP/WINNER II SCM model [10, p. 55]
to be valid for mobile movements up to 50λ. We also assume
that K samples of the CSI matrix are available either by
transmitting known pilot sequences or from measurement. In
practice, the estimated or measured channel will have some
imperfections due to the effects of noise and interference. The
estimated CSI matrix at time instant k is therefore defined as

Ĥ(k) = H(k) +W(k) (9)

where W(k) ∈ C2M×2N is a complex Gaussian random
variable that accounts for the effect of measurement/estimation
noise and multiuser interference.

III. PROPOSED PREDICTOR

Given the K estimates of the channel and the model in (6),
our aim is to estimate the parameters of the polarized MIMO
channel and use the estimated parameters for the prediction
of the CSI into the future. The different stages involved in the
proposed prediction algorithm are presented in this section.

A. Data Preprocessing and Covariance Matrix Estimation

In order to jointly estimate the parameters of the channel
using ESPRIT, we need to transform the CSI matrix such
that the invariance structure requirement [12] is satisfied.
Since the two elements of each antenna pair occupy the same
location, the channels between these pairs contain the same
information about the AOA and AOD although the polarization
dependant of complex gains are different. Consequently, the
invariance structure is not satisfied and we form four subsets



(corresponding to the four polarization components) from the
CSI matrix, given by

D̂ij(k) =


ĥi,j(k) ĥi,j+2(k) · · · ĥi,mj (k)

ĥi+2,j(k) ĥi+2,j+2(k) · · · ĥi+2,mj (k)

...
...

. . .
...

ĥni,j(k) ĥni,j+2(k) · · · ĥni,mj
(k)


(10)

where ĥi,j(k) is the (i, j)th entry of Ĥ(k), ni = (2N + i−2)
and mj = (2M + j− 2) and i, j = 1, 2. The four submatrices
specified in (10) correspond to the four possible polarization
combinations in a polarized MIMO channel. This is to ensure
that entries of the submatrices are phase shifted versions of
each other as required for parameter extraction using ESPRIT
[12]. Letting d̂ij(k) = vec[D̂ij(k)] be the vectorized form of
D̂ij(k) obtained by stacking its column, we form an NMR×
L Hankel matrix for each polarization conbination denoted by

Q̂ij =


d̂ij(1) d̂ij(2) · · · d̂ij(L)

...
...

. . .
...

d̂ij(R) d̂ij(R+ 1) · · · d̂ij(K)

 i, j = 1, 2

(11)
where L = K − R + 1 and R is chosen such that NMR ≥
P + 1. The data in Q̂i is equivalent to L observations from
an N × M × R three dimensional antenna array. It should
however be noted that the data is obtained by combining the
receive spatial, temporal and transmit spatial samples of the
channel. The spatio-temporal covariance matrix averaged over
the four polarization components is then estimated using

Ĉ =
1

4L

2∑
i=1

2∑
j=1

(Q̂ijQ̂
∗
ij) (12)

B. Subspace Dimension and Joint Parameter Estimation

A commonly used approach for estimating the number of
scattering sources is the Minimum Description Length (MDL)
information theoretic criterion. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂NMR

be the eigenvalues of Ĉ in descending order of magnitude, and
ê1, ê2, · · · , êNMR the associated eigenvectors. The estimate
of the number of paths is obtained from [13]

P̂ = arg min
p=1,··· ,NMR−1

L log(λp) +
1

2
(p2 + p) logL (13)

We arrange the eigenvectors corresponding to the P̂ largest
eigenvalues of Ĉ into a matrix E = [ê1, · · · , êP̂ ] and form
the following invariance equations

Sθ2E = Sθ1EΘ Sφ2E = Sφ1EΦ Sν2E = Sν1EN (14)

where Θ, Φ and N are subspace rotation matrices, the
eigenvalues of which provide information about the AOA,
AOD and Doppler shifts, respectively, and Sxi; i = 1, 2 are
selection matrices defined as

Sθ1 = IM ⊗ IR ⊗
[
I(N−1) 0(N−1)

]
Sθ2 = IM ⊗ IR ⊗

[
0(N−1) I(N−1)

]
(15)

where ID is an D × D identity matrix and 0D ∈ RD is
an D-dimensional vector of zeros. Sφi and Sνi are defined
analogously. The equations in (14) are then solved in a least
square sense to obtain

Θ = ((Sθ2E)∗(Sθ2E))−1(Sθ2E)∗(Sθ1E)

Φ = ((Sφ2E)∗(Sφ2E))−1(Sφ2E)∗(Sφ1E)

N = ((Sν2E)∗(Sν2E))−1(Sν2E)∗(Sν1E) (16)

Similar to [14], it can be shown that the P̂ eigenvalues of Θ,
Φ and N can be used to estimate the AOA, AOD and Doppler
shifts, respectively. However, an additional pairing scheme is
required to correctly pair the parameter estimates. In order to
achieve automatic pairing of the estimates, we instead define

Y = Θ + Φ + N = TΛT−1 (17)

where T is the common eigenvector matrix and Λ is a diagonal
matrix containing the eigenvalues of Y . The P̂ eigenvalues for
each dimension are then computed using

Λθ = diag[T−1ΘT]

Λφ = diag[T−1ΦT]

Λν = diag[T−1NT] (18)

where diag[A] contains the diagonal elements of A. The
parameter estimates for the pth path are given by

θ̂p = asin

(
− arg[Λθ(p)]

2πδr

)
φ̂p = asin

(
arg[Λφ(p)]

2πδt

)
ν̂p =

arg[Λν(p)]

2π∆t
(19)

where arg[·] denotes the phase angle of the associated complex
number in the range [0, 2π).

C. Polarimetric Weights Estimation and CSI Prediction

We assume that for a given multipath component the
complex polarimetric weights for all antenna pairs are equal.
This assumption is reasonable considering the separation of
polarization effects from path attenuation in (4) and the small
spacing between antenna elements. The complex weight ma-
trices can therefore be estimated from the first 2×2 submatrix
of the channel matrix. Let the submatrix be denoted as

ĤSUB(k) =

[
ĥ1,1(k) ĥ1,2(k)

ĥ2,1(k) ĥ2,2(k)

]
(20)

It can be shown from (4) that entries of ĤSUB are defined as

ĥi,j(k) =

P∑
p=1

ui,jp gp exp(j2π(k − 1)νp∆t) + wi,j(k) (21)

where gp = [gvvp , g
hv
p , g

vh
p , ghhp ]T , wi,j(k)

is the noise component and ui,jp =
[cosαi cosαj , cosαi sinαj cosφp, cosαi sinαj cos θp,



TABLE I: Simulation Parameters
Parameter Value

Number of antenna pairs (BS,MS) N=2, M=2
BS/MS antenna spacing 1/2λ

Number of Sources 10
Carrier frequency, Mobile Velocity 2.1 GHz, 50 Kmph

AOD U [−π/3, π/3]
AOA U [−π/2, π/2)

Sampling Interval, Training length 2 ms, 50
Dual Polarized Antenna Orientation +45/-45, 0/90

sinαi sinαi cos θp cosφp]; i, j = 1, 2. Collecting the K
known samples into a vector, we obtain

ĥi,j =

P∑
p=1

(fp ⊗ ui,jp )gp + wi,j (22)

where ĥi,j = [ĥi,j(1), · · · , ĥi,j(K)]T , fp =
[1, · · · , exp(j2π(K − 1)νp∆t)]

T ∈ CK×1 and wi,j is
the noise vector. A matrix representation for (22) is thus

ĥi,j = Fi,jg + wi,j ; i, j = 1, 2 (23)

where Fi,j = [f1 ⊗ ui,j1 , · · · , fP ⊗ ui,jP ] ∈ CK×4P̂ and g =

[gT1 ; · · · ; gT
P̂

] ∈ C4P̂×1 is a vector containing the polarimetric
weights for all scattering sources. Estimates of the polarimetric
weight matrix cannot be obtained directly from (23), because
the matrices Fi,j are rank deficient (with rank equal to P̂
instead of 4P̂ ) and as such the least square solution may not
converge to the optimal values. In order to overcome this, we
combine the four equations in (23)

h = Fg + w (24)

where h = [h1,1 h1,2 h2,1 h2,2]T ∈ C4K×1 and F =

[F1,1 F1,2 F2,1 F2,2]T ∈ C4K×4P̂ and solve (24) using
regularized least squares to obtain estimates of the weights

ĝ = (F∗F + ηI)−1F∗h (25)

where η is a regularizing parameter that improves the robust-
ness of the predictor by reducing sensitivity to errors in the
estimation of F. η was chosen emprically at about 10−5 in
this paper.

Once the parameters of the channel are estimated, the
extrapolation of the polarized MIMO CSI is achieved by
substituting the estimated multipath parameters into (4) for
the desired prediction horizon.

IV. PERFORMANCE EVALUATION

The performance of the proposed algorithm is evaluated in
this section. The simulation parameters are presented in Table
I (except where stated otherwise). The channel parameters are
assumed quasi-stationary for each realization but vary from
drop to drop. As stated in Section I, there have been no
previous works studying prediction of polarized channels. To
make comparison possible, we therefore compare the proposed
algorithm with an application of 1D ESPRIT [7]. In the
1D ESPRIT based scheme, only the Doppler frequencies of
the dominant sources are estimated and each entry of the
MIMO matrix is treated independently for estimation of the

TABLE II: Computational Complexity Comparison
Step Proposed Algorithm 1-D ESPRIT

Covariance Matrix Estimation O(4Lξ23) O(4Lξ21)
Estimation of Number of Paths O(ξ33) O(ξ31)

Parameter Estimation O(10P̂ 3 + 6P̂ 2ξ3 + 6P̂ ξ23) O(2P̂ 3 + 2P̂ 2ξ1 + 3P̂ ξ21)

Complex Weight Estimation O(64KP̂ 2) O(16NMKP̂ 2)

Channel Prediction O(2NMP̂ + P̂∆) O(4NMP̂∆)

complex weight. In Fig. 2, we present the normalized mean
square (NMSE) prediction error as a function of the predic-
tion horizon. Since the proposed multidimensional ESPRIT
based algorithm utilizes spatial, temporal and polarization
information to improve the parameter estimation accuracy, it
outperforms 1D ESPRIT based prediction for all prediction
ranges at all SNR levels The performance difference however,
increases with increasing SNR. This is possibly due to model
mismatch or under-estimation of the number of sources at
low SNR. In Fig. 3, we present the normalized square error
(NSE) cummulative distribution function (CDF) for prediction
intervals of 1λ, 5λ and 10λ at different noise levels. It
shows that the algorithm can predict far into the future.
The CDF plots in Fig. 4 show the effect of the number of
antennas, antenna orientations and polarization on the NMSE
performance of the proposed algorithm. We note that the
antenna orientation does not affect the performance of the
algorithm. Increasing the number of antenna pairs improves
the prediction accuracy since more structure of the MIMO
channel is revealed. A comparison of the plots for non-
polarized and polarized prediction shows that polarization
diversity can be exploited to improve the prediction by having
more antennas within the same limited space. Finally, we plot
the NMSE versus SNR for prediction lengths of 1λ, 2λ and
5λ in Fig. 5. We observe that the prediction error decreases
with increasing SNR. However, the error difference diminishes
with SNR. For instance, while increasing SNR from 0 to 5dB
decreases the NMSE by about 3dB, a similar increase from
10 to 15dB only produces NMSE decrease of approximately
0.2dB.
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Fig. 2: NMSE vs prediction horizon for the proposed algorithm
and 1D ESPRIT based scheme at different SNR values.

A. Complexity Analysis

The major computational requirement of both the proposed
and 1D-ESPRIT based algorithms is accounted for by the
covariance matrix estimation, source number estimation, ES-
PRIT based parameter estimation and complex weight estima-
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Fig. 5: NMSE versus SNR for prediction lengths of 1λ, 2λ
and 5λ. The prediction initialized with 50 samples.

tion stages. The computation of the NMR × NMR spatio-
temporal covariance matrix in the proposed algorithm (12)
has complexity O(4Lξ23), where ξ3 = NMR. In order to
allow fair comparison of the algorithms, we set ξ1 = ξ3 for
temporal correlation matrix in the 1D ESPRIT based approach.
Thus, the complexity for estimating the covariance matrix has
same order of magnitude. Since the eigendecomposition of the
covariance matrix dominates the complexity of the MMDL
based estimation of number of rays (13), the computation has
principal complexity O(ξ33). The same computation is also
required for the 1D ESPRIT based approach. The 3D ESPRIT
and 1D ESPRIT parameter estimation stages of the two
algorithms only differ in the number of matrix multiplications
and inversions, and has complexity O(10P̂ 3 +6P̂ 2ξ3 +6P̂ ξ23)
and O(2P̂ 3 + 2P̂ 2ξ1 + 3P̂ ξ21), respectively. Clearly, the com-
plexity of the proposed algorithm is only slightly higher for

this stage. The algorithms have complexity of O(64KP̂ 2)
and O(16NMKP̂ 2) for the polarimetric weight estimation.
Since the 1D ESPRIT based scheme compute the complex
weight for each entry of the MIMO channel independently,
the complexity grows with the number of antenna pairs at both
ends of the link and exceeds that of the proposed algorithm
for N,M > 2. Finally, the channel prediction stage has
similar complexity for both algorithms. A summary of the
computational complexity of the proposed algorithm and the
1-D ESPRIT based scheme is presented in Table II.

V. CONCLUSION

We have proposed an effective channel prediction algorithm
for polarized narrowband MIMO channels. The proposed
algorithm is based on the double directional model and an
ESPRIT based multidimensional parameter estimation. The
polarization diversity in the channel is utilized to improve
parameter estimation accuracy. Simulation results show that
the predictor can achieve useful prediction horizons even
with short training lengths. Future work will evaluate the
performance of the algorithm with measured data.
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